
Numbers
Count Your Blessings

Techno-Plaza -Oct 1, 2021  

TECH DISCUSSIONS -JOHN WOLF 1

Introduction

Today's kids are taught to approach counting through sets. You count by exclusion.
Compare one group to another and note what's not there from the smaller group. All of this is
complete abstraction to basic fundamentals of counting. It's like using matrix algebra to
balance your checkbook. Oh, I forgot, no one uses checks anymore and reconciled bank
accounts are done automatically by a cloud app. The point being; if you want to know how
computers work, you need to understand basic counting along with the associated logic
circuits that do that counting.

It took mankind millenniums to discover that zero was actually a state that needed to be
included in a count. It is possible to have nothing to count but of course, that does matter
much when counting products to sell or how many of whatever you get when buying. But as a
placeholder for sets of counts turns out to be the key. When the count gets large, you need a
way to condense your numbers. It's silly to have a name for each separate count, say past
10, the number of fingers you have. Zero establishes a place holder for sets of counts so you
can count up larger numbers easily. Roman numerals eventually got too unwieldily. But it's
hard to teach young kids the optimum counting system because it is an infinite power series.
Here it is: ...dxBn + dxB3 + dxB2 + dxB1 + dxB0 = count, where the B is the base, i.e., 10, the d
is the digit needed to count up to the base value, and the n is the power index that can go to
infinity and it all starts with zero. This is not an easy concept to pass on to elementary school
kids but the power of it is any counting system can be described by this equation. We are
used to base 10 but what's just as important today is base 2 or the binary system where we
are only dealing with two digits, "1" and "0", but you only need a "1" to get started. Just keep
adding more "1s" to get to any count value...after a lot of tedious counting but computers are
very, very fast and don't get bored. You get the same answer as a base 10 (or any other
base) it just takes a lot of steps. There is a gotcha. You have to agree on what B0 means. Ten
to the zeroth power is 1 and 0x1 is zero so this first element can be either a 0 or a 1
depending on the digit d, therefore the far right column just mirrors the digits from 0 to 9 with
the decimal system or 0 and 1 with the binary system. The binary systems trigger a carry
rather quickly, since the right column count can only be 0 or 1, then the next power kicks in at
count 2.

The figure on the next page dramatizes this concept and should clear everything up for
the skeptics. If you can't accept how binary counting works, then computers will never be
your area of expertise. You should move on to painting or sculpture for example.

TECH DISCUSSIONS -JOHN WOLF 2

TECH DISCUSSIONS -JOHN WOLF 3

⌖ Any Number = ...digit x base2 + digit x base1 + digit x base0

 20510 = 2 x 102 + 0 x 101 + 5 x 100 (digits 0 - 9 in decimal)

 200 0 5 = 205

 1112 = 1 x 22 + 1 x 21 + 1 x 20 (digits 0 or 1 binary)

 4 2 1 = 7

 A8216 = 10 x 162 + 8 x 161 + 2 x 160 (digits 0 to F hex)

 2560 128 2 = 2690

 YYN7 = Y x 72 + Y x 71 + N x 70 (digits yes or no)

 49 7 0 = 56

Gang sign = “dxBi” digit x base(radix) to integer exponent sequence

The reason binary mathematics is chosen as the basis for modern computers is
electronic circuits can easily be made to be either switched on or off to match the numbers
the user places into the machine so a human to machine interface is realized. Logic gates
based on switching can perform all sort of functions from math operations to comparisons but
more importantly represent decision points within a digital word of bits or a series of 1s and
0s by abstracting whether an idea is either true or false by assigning that idea to a 1 or 0.
Various functions within a computer can be sequenced by binary numbers like memory
addresses or the data values at those addresses. The point is whether you're talking about a
plain number value that's calculated or the status of the machine, or where in memory to
store a value, it can all be abstracted into languages that humans can easily understand
without resorting to fumbling with 1s and 0s. It starts with the understanding how the
computer is engineered and define various states and operations with a code written in
binary. Then various collections of code steps are combined into a usable operations and
given a name. The code that represents the machine state of which circuits are on or off
determines what the next thing the computer is about to do is called machine code and is a
set of 1s and 0s but represents an operation. This operation can be abstracted to a statement
a human can read like add for adding two numbers and storing the answer. Then part of the
statement includes where the operands are stored and where to place the answer. This level
of language is called assembly language. Assembly language statements can then be
arranged to perform higher level operations like data structures, memory management and
that's where languages like C and C++ were developed. Further advances form instruction
shells around C and C++ to capture larger concepts within programs to improve efficiency,
routines that perform complex math operations, or data organization like databases.
Examples of higher level languages would be JavaScript, Python, Java or any number of
frameworks and application specific languages or libraries that encompass modern
computing practices. All of it rests on defining the meaning behind a set of 1s and 0s.

The power of a binary basis is you only need a one to start adding up to any other
number and decisions are made by determining whether a statement is true or false, which
can be abstracted or assigned to 1 or 0. As primitive as this may seem, it is the foundation of
all modern computers and how they operate.

TECH DISCUSSIONS -JOHN WOLF 4

	Introduction

