
Introduction to

Web Development

by John Wolf

Web Development
1

“Code it and let it live”
– John Wolf 	

Let’s get serious and maybe get
with the 21st Century. Screens

are everything, paper is just pulp.

World Wide Web - Protocols

Knowledge is king. It doesn’t matter how
you get it, from a cereal box, an MIT online
course, slogging through a four year uni-
versity gig, or on-the-job training from a
web guru, just get it. YouTube gurus have
well established themselves as credible
resources. Internet based academies and
bootcamp courses are all good, not to
mention all the major universities, but what
I want to do here is lay a foundation that
you can depend on to get started. It never
hurts to enter the competition with a solid
skill level that will grease your way. After
all, you want to sail through the learning
process and get stuck in using this stuff
and earn some payback.

It all started with the establishment of the
Internet and the advent of the World Wide
Web, which is a discussion not a thing. It’s
best described as an information system
where resources are interconnected via
addressable-activated text or images em-
bedded within a document. Hypertext be-
ing some identified text or image when
clicked in a Browser sends an address out
onto the Internet to locate the desired re-
source like a spider, thus the term web is
pretty good. Once found, the resource is
returned to the sender or more specifically
the sender's Internet address. All these
possible addresses are interconnected in
many ways and locations via electronic
switching and routing.

3

If this sounds all a bit cryptic, it will all play
out well when we get into the mechanics
of how it's done. The star in this play is the
Browser. Browsers house the software that
speak the protocols of the Internet and the
interpretation of the information received
back. This is known as a query-response.
So what is the message traffic like that
moves to and from these addresses?

The beauty of the digital world of commu-
nication is something called data-packets.
Instead of a continuous connection like the
analog world of telephones a few decades
ago is instead compressed nuggets of
digital information that can be sent on the
same wire as small discrete collections.
They only take a short time for each com-
munique. Therefore, a bunch of them can
exist on the same wire in a serial fashion
and be routed to lots of different users
through multiple paths. So instead of just
two users on a dedicated wire for their
conversation, a bunch of computers can
be involved in a network all sharing the
same set of wires or several communica-
tion system types. Of course, these ad-
dresses have to be uniquely distinguished
for the routing switches not to get con-
fused.

Computers usually only need a small bun-
dle of data at any one given time to get the

job done. Also, the faster the data comes
though, the less time needed to occupy
network resources. Analog conversations
would blur into gibberish if sped up super
fast.

I use “wire” here to mean an interconnec-
tion, but that could be copper, optical fiber,
microwave transmission or any number of
technologies that move digital data. Also,
note that the Internet connects software
applications and not a direct communica-
tion between people. A user/person might
read a screen or respond to a an LED
coming on, but the actually business-end
of this communication is one computer
talking to another computer via the apps
running at the same time. The incoming
data could be converted to an analog out-
put of sound or video but it's computer-to-
computer apps doing the talking. There-
fore, a massive number of packets can
share the same system going in different
routes all optimized for speed and then put
back in order at the receiving end. The
faster the better. We call this "high band-
width" but that is a misnomer. Bandwidth
is the amount of measured frequencies
from one point to another. Digital band-
width borrows this term to mean transmis-
sion speed from low to high in relative
terms.

4

I mentioned switching earlier. Switching
focuses specifically in a local setting of
computers thus called a Local Area Net-
work or LAN. Once out on the Internet,
routers take on the task of finding distant
LANs to dump the data, thus the term
Wide Area Network or WAN. Even more
specific is the sender is usually referred to
as the client and the receiving end is most
likely a computer set up as a server. Here
again is some fuzz. Client can also refer to
the app running on the user's computer.
All of this activity is governed by a set of
protocols so that all the participants un-
derstand how to build and write software
that is compatible. Now we pick on the
Browser some more.

Browsers are a complex combination of
software apps or APIs and interpreters that
build an image on the client’s compute
screen or viewport once a transmission re-
sponse is received. It does this by reading
the received code and selecting a variety
of built-in apps to decode what is seen.
This most likely will be HTML code so a
webpage can be build. HTML is a struc-
tural thing that contains the basic informa-
tion to be placed on the screen. It’s the
CSS code (Cascading Style Sheets) that
styles the presentation to look like what
we expect to see. The gorilla in the room is
JavaScript that makes the page interactive

in many ways from smooth scrolling to ac-
tivating sections of the screen to be re-
placed with new data without having to re-
load the whole page. In fact, entire sys-
tems from the frontend to the backend can
be developed from JavaScript code.

So what’s the frontend and backend. The
Frontend refers to the code seen on the
users or client’s computer. The focus is on
design and layout so the presentation
pleases the user’s eye and presents the in-
formation efficiently. The backend is the
code used to run the server and control
access of web pages, supporting files and
database information. So web design is
usually associated with the frontend
process or UI(User Interface) and web de-
velopment is associated with the backend
process.

Now that we've explained what HTML and
CSS and JavaScript are, let's get into
some details. Hyperlink Text Markup Lan-
guage (HTML) is a mouthful but is charac-
terized by a set of commands hidden with-
in a set of angle brackets collectively
called tags using the greater-than and
less-than symbols found on the keyboard (
< and >). Between the brackets, various
letters and words signal the Browser what
needs to be done to build the page. For
example, the <p> tag sets aside a para-

5

graph of text. The <head> tag establishes
an area where meta information can be di-
rectly communicated from the programmer
to the browser like what language the
page is in or where to locate additional
code needed to build the page like the
CSS and JS mentioned above. The
<body> tag distinguishes the part of the
page that can be seen on the viewport.
The <head> information is not displayed.
At the top of each webpage there is a dec-
laration that the document is actually an
HTML page with <!DOCTYPE html> fol-
lowed by another tag, or contained within
the DOCTYPE, the statement <html lang=”
en”> indicating this document will be in
English and starts here. There is a match-
ing tag </html> indicating the end of the
document. So there is a pattern or boiler-
plate of code that makes up the basic set-
up for any webpage that looks like this:

<!DOCTYPE html>

<html lang="en">

 <head>

	 ...

 </head>

 <body>
	 ...

 </body>

</html>

This template allows all sorts of informa-
tion to be placed in the <head> area and
the <body>. Notice the / symbol is used to
close the tag. In tech-notes associated

with the WolfDenElectronics website, we
will get into the details of how to construct
HTML. One thing to note here is this ap-
proach of encoding plain text with symbols
is tags is called a markup language, mean-
ing a plain text document can be used to
invoke action by the browser. Just a file
extension of .html does the trick.

CSS stands for Cascading Style Sheets,
which implies there is a hierarchy to it. And
there is. You apply a style though an at-
tribute called out with either “class” or “id”
precursor. An “id” is unique to the page. A
“class” implies the style may be applied
multiple places on the page. If you apply a
style directly to an element within the
page, it takes priority. The next level in the
cascade is in the <head> area where you
can use a <style></style> tags. Next is via
a separate file whose location is found
from a <link> tag in the <head>. This is
used when the styles needed get lengthy
and complex, which is typical.

JavaScript is a programming language that
operates from a realtime interpreter found
within the browser app. It has all the bells
and whistles of many other languages in-
cluding Object Orientated Programming.
It’s purpose is to manipulate the elements
of the DOM (document object model),
which is the tree-like structure the browser

6

JavaScript

Unlike most languages, JavaScript is di-
rectly attached to the HTML elements and
that’s where the action is. JS code trace
down through the DOM to an element
called out by element name, class name,
or ID name. To get the selected element
into the JS code for manipulation, you as-
sign it to a variable. For example:

const listItem =
document.querySelector(‘.list-item’);

Notice that the query statement is a
method based on “document”, which is
the top level of the DOM. You can also go
up a level and address the window for ma-
nipulation of the elements like scrolling
and mouse positions. In this example, the
“.list-item” is a class assigned to some
element like a <div> tag.

Once the JS code has a grip on the <div>
tag, JS can add an additional attribute to
modify the styling or even add a child ele-
ment to a parent. The DOM refers to par-
ents as a tree node with attached children
and siblings below in the hierarchy. You
can also add an event listener for a click or
mouseover, etc. to tie in user actions. Any

action like this activates a callback func-
tion. This gives you a way to cause a block
of instruction to commence when the code
“sees” the event.

So JavaScript is like an overlord for the
webpage. Normally, all the user interac-
tions to the page would be built into the JS
code. JS can add HTML elements onto the
DOM without reloading the entire page,
which would entail a new data query/re-
sponse to the server.

Subtle things like watching user inputs into
a form, for instance, can be checked and
verified for correctness. If not acceptable,
the input information can be ignored and
an alert issued to warn the user. Only
when correct data is entered will the call-
back function perform the next action. This
helps avoid corrupted data from reaching
your database or hackers from penetrating
your system.

JS not only rules the DOM, it also manipu-
lates many of the CSS properties, so tran-
sition, transform, positioning, styling, hid-
ing/revealing, virtually any CSS functionali-
ty can be manipulated.

7

Network

The Browser has the ability to send what's
called a HTTP Request, which is a mes-
sage that conveys the details necessary to
transverse the Internet's network. This is
done through protocols, which are a set of
rules that determine how data is transmit-
ted between different devices in the same
network. HTTP is hypertext transport pro-
tocol. This implies a bit of complexity and
there is. There is a protocol stack from the
Browser down to the actual wires that
move the data. Each layer help form the
message that will go out. The addressing
is governed by IP or Internet Protocol. This
establishes the sender's address and the
receiving address but first a mini-message
has to go out to interpret your Uniform
Routing Location(URL) that is in the form
of a wordy descriptor that computers can't
handle like www.google.com or Harrys-
BarAndGrill.org. There are servers on the
Internet at large that can take this gibber-
ish and convert it into a 32-bit or 128-bit
code that is registered to the entity you're
trying to solicit a response from. This data
is woven into the message along with
whether you are requesting info or sending
info, i.e., to a database. There is another

term that shows up in the Request call the
"host." Host is a broad term, but here we
are putting into plain text the name of the
computer/server or agency where your
data is going to be coming from.

Typically, the messaging is a series of
messages that are numbered and sent as
short bursts. The receiving end sends
back an acknowledgment it received it or
not. If not, it's repeated. Eventually, all the
pieces get there, and the server end then
compiles the web page requested and
sends it back to the client computer or
host or a lot of other labels. Your Browser
parses the incoming message from your
request into all the supporting files like
CSS, JS, images or other files that make
up the website.

As you can see, a lot goes into requesting
and receiving website information to build
a DOM and render it to a user. And this is
just from the data protocol point of view.
We also have the electronic protocols that
have to be compatible such as Ethernet to
TCP to transport medium, proxy user-
agents, routers, WANs and LANs just to
place the one-and-zeros and clock signal

8

on whatever is going to move your data
within various junctions across the typical
hardware network between you and the
server. The point here is there is too much
complexity to tell-all in a quaint digest
format like this, but the biggies are the
Browser sets up a GET (I want info from
the server) or POST (I want to send info to
a database) also UPDATE and DELETE
message to a particular host using a par-
ticular HTTP version and lists the URL to
use to collect the response back. Your re-
quest may be hustled by all sorts of prox-
ies, routers, and groups of distributed
servers or shared assets by the time a re-
sponse message is constructed and sent
back. Your data-packets may be framed
up into many different electronic formats
going from one medium to the next, but
rest assured the system will keep pumping
packets until your response gets back to
you. This would not be complete without a
mention of the various security and en-
cryption activities that are critical to com-
munication of important data. Also, we
should note that the data format of choice
these days is JSON (JS object notation),
which is a fancy version of a JS Object.
The difference being, JSON requires the
keys to be in double quotes where a regu-
lar JS object doesn't. The data is in key/
value pairs. The conversions are simple

and use JSON.stringify() function to get
your data out properly and JSON.parse()
function on incoming data. This said, you
might ponder the idea that JS could be a
language that reaches further than the
Browser guts and you would be right.

JavaScript in the wild is called Node.js and
was created by an Open Source engineer
thank goodness. Most of its assets have
since been gobbled up by Microsoft. The
vast majority of all the frameworks that are
in use now are based on Node.js. So JS
runs the Browsers and the Servers and all
the data formatting in between. Everything
else is a vestige of the past.

You should be able to see now why Java-
Script is a hot item. Oh, by the way, Mi-
crosoft bought out GIT, the most used ver-
sion control cloud-based service for most
of the world's developers and integrates
seamlessly into many hosting companies
cloud-based services. They also bought
out NPM (Node Package Manager) that is
the world's largest software registry. Who's
your Daddy now?

9

	Web Development
	World Wide Web - Protocols
	JavaScript
	Network

